사업성과

연구성과

[논문] Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells
2024-04-09
c73a8918af7702ec7e5ba905ab1264cd_1712642607_349.png
 

세포와 세포소기관 유전자 염기교정 원천기술 개발과 고도화 연구

연구책임자 : 울산대학교 김용섭 교수



The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. 

Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. 

While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. 

In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. 

The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. 

By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. 

Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. 

These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. 



BMB Reports 57(1), 2024.1.


https://doi.org/10.5483/BMBRep.2023-0221 

닫기